skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ford, Roseanne_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sonification, or the practice of generating sound from data, is a promising alternative or complement to data visualization for exploring research questions in the life sciences. Expressing or communicating data in the form of sound rather than graphs, tables, or renderings can provide a secondary information source for multitasking or remote monitoring purposes or make data accessible when visualizations cannot be used. While popular in astronomy, neuroscience, and geophysics as a technique for data exploration and communication, its potential in the biological and biotechnological sciences has not been fully explored. In this review, we introduce sonification as a concept, some examples of how sonification has been used to address areas of interest in biology, and the history of the technique. We then highlight a selection of biology‐related publications that involve sonifications of DNA datasets and protein datasets, sonifications for data collection and interpretation, and sonifications aimed to improve science communication and accessibility. Through this review, we aim to show how sonification has been used both as a discovery tool and a communication tool and to inspire more life‐science researchers to incorporate sonification into their own studies. 
    more » « less
  2. Abstract When chemotactic bacteria are exposed to a concentration gradient of chemoattractant while flowing along a channel, the bacteria accumulate at the interface between the chemoattractant source and bacterial suspension. Assuming that the interface is no‐slip, we can apply the shear flow approximation near the no‐slip boundary and solve a steady‐state convection‐diffusion model for both chemoattractant and bacterial concentrations. We suggest similarity solutions for the two‐dimensional problem and identify a critical length scaleηcfor bacteria chemotaxis in a given concentration gradient. The analysis identifies three dimensionless groups representing, respectively, chemotactic sensitivity, the chemotaxis receptor constant, and the bacteria diffusion coefficient, which typically show coupled effects in experimental systems. We study the effect of the dimensionless groups separately and provide understanding of the system involving shear flow and chemotaxis. 
    more » « less